Chapter 13: Volcano Seismology (Joachim Wassermann, Jürgen Neuberg)

(Note: New contributions/topics are marked in red)

13.1 Introduction

13.1.1 Why a different chapter

13.1.2 Why using seismology when forecasting volcanic eruptions

13.2 Classification and source models of volcano-seismic signals

13.2.1 Transient volcano-seismic signals

13.2.1.1 Volcanic-Tectonic events (deep and shallow)

13.2.1.2 Low-Frequency events

13.2.1.3 Swarms of seismic events

13.2.1.4 Explosion quakes, ultra-low-frequency events

13.2.2 Continuous volcanic-seismic signals

13.2.2.1 Volcanic tremor (low-viscous two-phase flow and eruption tremor)

13.2.2.2 Volcanic tremor (high-viscous)

13.2.2.3 Surface events

13.2.3 Special note on noise

13.3 Design of a monitoring network

13.3.1 Station site selection

13.3.2 Station distribution

13.3.3 Seismic arrays in volcano monitoring

13.3.4 Network of seismic arrays

13.3.5 Communication Lines

13.4 Analysis and methodology

13.4.1 One-component single station

13.4.1.1 Spectral analysis

13.4.1.2 Envelope, RSAM and cumulative amplitude measurements

13.4.1.3 Material Failure Forecast Method (FFM)

13.4.2 Three-component single station

13.4.2.1 Polarization

13.4.2.2 Polarization filters

13.4.3 Network

13.4.3.1 Hypocenter determination by travel-time differences

13.4.3.2 Cross correlation of diffusive wavefield

- (Campillo)

13.4.3.3 Moment Tensor Inversion (Method)

13.4.4 Seismic arrays

13.4.4.1 f-k beamforming

13.4.4.2 Array polarization

13.4.4.3 Array analysis of non-planar wavefronts

13.4.4.3 Hypocenter determination using seismic arrays

13.4.5 Automatic analysis

- List of possible software packages with applications for volcano seismology

Annex 1
13.4.5.1 Automatic Classification/Detection
- Self Organized Maps, Neuronal Networks, Hidden Markov Models, Template Based Pattern recognition
13.4.5.2 Automatic Source Location
- pick based, waveform or coherency based, amplitude-distance modules etc.
13.4.5.3 Automatic Standard Tools
- SSAM, RSAM etc.

13.5 Interpretations and Source Models
13.5.1 Volcano seismicity and magma flow models
13.5.2 Volcano-Tectonic events and the associated stress field
- regional stress field
- magma induced stress
13.5.2. Low frequency events and swarms
- resonance models: dykes, conduits and cracks
- trigger: stick slip, magma rupture
13.5.3 Constraints through seismic moment tensor inversions
13.5.4 Volcano seismicity as a forecasting tool

13.5 Other monitoring techniques..36
13.5.1 Infra Sound
(New important field for validation of surface activity and estimation of eruption strength; closely related to seismology)
13.5.2 Ground deformation...36
(tilt, strainmeter measurements, GPS, InSAR, ground base InSAR (see 13.5.5))
13.5.3 Micro-Gravimetry...37
13.5.4 Geochemical gas-monitoring...38
(CoSPEC, DOAS, FTIR - ground based and remote)
13.5.5 Thermal and video surveillance
13.5.6 Laboratory studies
List of possible parameter estimated out of these studies
13.5.5 Meteorological parameters ..39

13.6 Technical Considerations...39
13.6.1 Site and Vault ...39
13.6.2 Sensors and digitizers ..41
13.6.3 Analog versus digital telemetry ..41
13.6.4 Power considerations ...42
13.6.5 Data center ..43

13.7 References..43