Chapter 14: Strong-motion recordings and data analysis for applications in earthquake risk mitigation, seismology and engineering (Gary Gibson).

(Note: * Means references to already existing chapters in the Manual)

14.1. HAZARD, VULNERABILITY AND RISK

14.1.1. Definitions of hazard, vulnerability and risk

14.1.2. Earthquake hazard, vulnerability and risk

14.1.3. Risk Mitigation

Past events

Hazard studies

Present events

Warnings and alarms

Future events

Alerts, forecasts and predictions

14.1.4. Earthquake Risk mitigation

Past earthquakes

Earthquake hazard studies

Present earthquakes

Earthquake warnings and alarms

Future earthquakes

Earthquake alerts, forecasts and predictions

Ground motion recurrence

14.1.5. Acceptable and Unacceptable Risk

14.1.6. Earthquake Risk Criteria

Probability of exceedence per year

Return period

Design life of structures

Probability of exceedence in design life
Specified risk criteria

Maximum Design Earthquake

Operating Basis Earthquake

14.2. **SEISMICITY MODELS**

14.2.1. **Earthquake source parameters**

Location

Magnitude *

Fault types

Focal mechanisms *

Fault rupture models

Rupture dimensions *

Rupture duration

Strong motion duration

14.2.2. **Earthquake clustering**

Foreshocks and aftershocks

Earthquake swarms

Precursory earthquakes

Adjustment earthquakes

Earthquake cycles

Triggered and induced earthquakes

Declustering for recurrence estimates

14.2.3. **Earthquake catalogues**

Parameters

Uncertainties

Independent or dependent

Earthquake effects

Historical earthquakes

Estimating source parameters
14.2.4. **Geological Data**

- Structural geology
- Neotectonics
- Palaeoseismology
- Calibration of methods using recent earthquakes

14.2.5. **Earthquake Magnitude Recurrence**

- Gutenberg-Richter

 Seismicity b-value
14.2.6. Maximum credible magnitudes

14.2.7. Use of earthquake source zones
 Volume or area source zones
 Active faults

14.2.8. Quantification of source zones
 Catalogue completeness
 Maximum likelihood, least squares

14.3. GROUND MOTION MODELS

14.3.1. Source, travel path, site and structure

14.3.2. Source
 Magnitude and attenuation
 Magnitude scales
 Variations depending on rupture size and orientation

14.3.3. Travel Path
 Q(f)

14.3.4. Site Response
 Impedance effects
 Resonance effects
 Basin effects
 Other site phenomena
 Methods for considering site response

14.3.5.

14.3.6. Attenuation

14.3.7. Ground Motion Models

14.3.8. Next Generation Attenuation

14.4. HAZARD, AS DEFINED BY GROUND MOTION RECURRENCE

14.4.1. Measures of ground motion
 Intensity *
Displacement, velocity and acceleration

Time series

Peak values and their limitations
Fourier spectra

Response spectra

14.4.2. **Deterministic and probabilistic Methods**

14.4.3. **Extreme value methods**

14.4.4. **Cornell Method**

14.4.5. **Choice of ground motion models**

Limits applicable to ground motion models

14.4.6. **Computation of Ground Motion Recurrence**

Minimum considered magnitude

14.4.7.

14.5. **TIME SERIES ANALYSIS**

14.5.1. **Engineering models of structures**

14.5.2. **Engineering site/structure models**

14.5.3. **Selection of representative time series**

14.5.4. **Spectral scaling**

14.5.5. **Spectral matching**

14.6. **STRONG MOTION MONITORING**

14.6.1. **Data required for earthquake risk mitigation**

Global, regional and local monitoring

High resolution seismology

Location

Magnitude

Focal mechanisms

Attenuation
14.6.2. Instrumentation

Original analogue accelerographs

Digital accelerographs

14.6.3. Strong motion databases