EARTHQUAKE DYNAMICS: from rupture to seismic radiation

Keynote lecture delivered at IASPEI 2009 In Cape Town, South Africa

> Raul Madariaga Laboratoire de Géologie CNRS

Ecole Normale Supérieure Paris, France

Different scales in earthquake dynamics

Earthquakes as dynamic shear ruptures

Rupture modelled on the complex fault system determined from Geology, Geodesy and Seismology Preexisting Fault system in the Mojave desert

Aochi et al. 2003

Kinematic models of the Izmit Earthquake 1999

Yet kinematic inversions are often very non-unique.

The good old circular crack explains Brune's spectrum

Spectral stack from Prieto et al. , 2004

From these spectra we can compute

the damping coefficient

$$C_{r} = \frac{\mu E_{r}}{M_{o}^{2}} \frac{\beta^{3}}{f_{0}^{3}} = \sigma_{a} \frac{\beta^{3}}{M_{o} f_{0}^{3}}$$

The usual view of this variation

Deviation of self-similarity over 6 orders of magnitude

Scaling of energy with earthquake size

For Brune's model

$$\frac{E_r}{\Delta W} = \frac{32}{7} C_r \frac{r^3 f_0^3}{\beta^3}$$

Brune used

$$f_0 = 0.3724 \frac{\beta}{r}$$

$$\frac{E_r}{\Delta W} = 0.466$$

Global Energy Balance

Fracture energy grows with earthquake size

It is not a material property

This must be included in earthquake models designed to predict seismicity

Circular crack dynamics

Fully spontaneous rupture propagation under slip weakening friction

Rupture process for a circular crack

Radiation is controlled by wave propagation inside the fault!

Far field radiation from circular crack

Can devise the equivalent of Brune's model for near field data ?

Work done in collaboration with Sara DiCarli (ENS Paris) Caroline Holden-François (New Zealand) and Sophie Peyrat (IPG Paris)

The 2000 Western Tottori earthquake

- Tottori accelerograms
 have absolute time
- Hypocentre determined directly from raw records

- No surface rupture observation
- M_w 6.6~6.8
- Pure left-lateral strike slip event

Classical Dynamic inversion

DYNAMIC Stress Drop [MPa] and 1sec-contours of spont. rupt. times

Classical approach:

convert kinematic model into a dynamic model

compute stress change from slip history. (Bouchon, Ide and Takeo, etc.)

Example from Dalguer et al (2002)

Tottori earthquake: first true dynamic inversion by Peyrat and Olsen (2003)

Inversion followed the grid pattern of classical kinematic inversions.

Used 32 patches of initial stress

Rupture resistance was uniform,

Two problems :

How to handle discontinuous stress patches

And how to stop rupture?

Tottori earthquake June 2000:

Data: 8 3-component displacement records integrated from KiK-net and K-net stations filtered with *causal* Buttersworth filter between 0.1 and 0.5 Hz

Inverse Kinematic Problem

Traditional approach is to use a discontinuous grid.

Suggestion:

Let us look only at low frequencies using Moments of slip distribution:

An alternative approach to the Inverse Kinematic Problem

We use a Gaussian slip distribution

This slip distribution has 8 parameters:

centroid
semiaxes and angle
maximum slip
rupture speed
rise time of STF

See also Bukchin et al, McGuire and Jordan, Vallée and Bouchon

Tottori earthquake June 2000:

Kinematic inversion with 2 ellipses

 $M_0 = 1.19 \ 10^{19} \ Nm$ Mw=6.7

Tottori earthquake June 2000:

Comparison of observed and kinematically modelled records

GMT 2008 Apr 25 12:25:57

Convergence of the NA algorithm

14 parameters

Dynamic inversion

Problem: radiation does not know about absolute stress value

The most important feature: The dynamic problem is fundamentally ill-posed

we can either invert a **Barrier** or an **Asperity** model

Asperity: variable initial stress, homogenous rupture resistance (Kanamori, Stewart, Ruff, Lay, ...)

Barrier: initial stress is homogenous, rupture resistance is variable and stops rupture (Das, Aki)

Seismic waves can not distinguish asperities and barriers

Dynamic modeling

Numerical simulation by staggered grid Finite Differences

Cube 80×80×80 points, $\Delta x = 400 \text{ m}$ $\Delta t = 0.02 \text{ s}$

Thin boundary conditions (no split nodes)

Friction law: slip weakening

Propagation with Axitra (spectral method)

1 mn per model

Dynamic inversion of Tottori earthquake

Distribution of barrier: blue breakable red unbreakable

Convergence of dynamic inversion algorithm

Only 12 parameters were inverted

iteration

Comparison of observed and dynamically modelled records

Misfit $\chi 2 = 0.29$

Kinematic was 0.29

slip • t = 1 ۲ t = 2 • t = 3 • t = 4 t = 5 5 t = 6 t = 7 t = 8 t = 9

Stress change • t = 1 • t = 2 € t = 3 • t = 4 t = 5 • t = 6 t = 7 t = 8

t = 9

Tottori earthquake

Rupture process of best model

time

Dynamic parameters are not independent

Non-uniqueness due to limited resolution Alternative model of Tottori earthquake

Inverted model that Rupture the free surface Misfit

 $\chi^2 = 0.295$

Conclusions

Dynamic inversion is possible

Like Brune's model, inversion is dominated by stopping phases

Dynamic parameters (stress and Gc) are connected by k.

Dynamic inversion is non-unique

Dynamic inversion is dominated by geometry

We need more power to study a posteriori PDFs