PUBLICATIONS DU BUREAU CENTRAL DE L'ASSOCIATION INTERNATIONALE DE SISMOLOGIE. VERÖFFENTLICHUNGEN DES ZENTRAL-BUREAUS DER INTERNATIONALEN SEIS-MOLOGISCHEN ASSOZIATION

SÉRIE A. MÉMOIRES.

6

6

SERIE A. ABHANDLUNGEN.

C

LES TREMBLEMENTS DE TERRE DU KAMTCHATKA EN 1904.

PAR

ELMAR ROSENTHAL.

STRASSBURG. 1907.

Les tremblements de terre du Kamtchatka en 1904

par

Elmar Rosenthal.

Les tremblements de terre du Kamtchatka en 1904.

Aux mois de juin et de juillet 1904, la côte orientale de la presqu'île de Kamtchatka subit un grand nombre de forts tremblements de terre dont les oscillations furent enregistrées à la plupart des observatoires sismologiques du monde. Jusqu'à présent cependant, l'épicentre d'où vinrent ces ondes est resté inconnu et l'on ne trouve que des indications assez vagues dans Milne et dans le "Bolletino Italiano", suivant lesquels l'origine de ces enregistrations se trouverait à l'extrême orient. Je vais donner dans ce qui va suivre une étude de ces nombreuses enregistrations en comparant les documents macrosismiques peu détaillés qu'on a pu obtenir.

Les observations macrosismiques ¹) sont dues à M. Kossatcheff, chef du phare de la ville de Pétropawlowsk, $\varphi = 53^{\circ} 03'$ N, $\lambda = 158^{\circ} 49'$ E.Gr. $= 10^{h} 33^{m} 3^{2}$). Elles sont complétées par une description tirée d'un journal russe. L'heure des observations de M. Kossatcheff est déjà celle de l'Europe centrale, tandis que les indications du journal se rapportent à l'heure locale. J'ai fait un tableau des observations après avoir converti l'heure de l'original en celle de Greenwich qui sera toujours celle employée dans cette étude. Ce n'est que dans ce tableau que j'ajouterai encore l'heure locale pour faciliter la comparaison avec les indications du journal. Voici les résultats.

¹) Bull. de la Commission Sismol. Centrale de St. Pétersbourg pour l'année 1904 (En langue russe.)

²⁾ Les coordonnées sont tirées de l'Atlas russe de Marcks.

Nº	Heure de Greenwich	Caractère	Durée totale	Direc- tion	Force d'après M. Kossatcheff	Heure locale
I	24 Juin · 1 ^h 17.4 ^m		30s	N-S		24 Juin 11 ^h 50.7 ^m
II	25 Juin 2 ^h 40 ^m	ondulat.	35 s	N-S	v	25 Juin 13 ^h 13.3 ^m
III	25 Juin 15 ^h 04 ^m		50s	N-S	VI	26 Juin 1h 37.3m
IV	25 Juin 15h 13m		05s	N-S	III	26 Juin 1 ^h 46.3 ^m
v	25 Juin 19 ^h 04 ^m		09s	N-S	IV	26 Juin 5h 37.3m
VI	25 Juin 21h 17.6m	3 secousses	45 s	N-S		26 Juin 7h 50.9m
VII	26 Juin 23h 14.7m		45 s		·V	27 Juin 9h 48.0m
VIII	27 Juin 0h 26m		15s		V	27 Juin 10 ^h 59.3 ^m
IX	27 Juin 2h 06.7m		30 s		V	27 Juin 12 ^h 40.0 ^m
Х	28 Juin 11 ^h 16 ^m	1 secousse	07s	N•S	II	28 Juin 21 ^h 49.3 ^m
XI	30 Juin 13 ^h 13 ^m		05s		II	30 Juin 23 ^h 46.3 ^m
XII	30 Juin 13 ^h 28 ^m		10s		III	1 Juill. 21 ^h 01.3 ^m
XIII	24 Juill. 10h 34m	3 secousses	45s	N-S	v	24 Juill. 21h 07.3m
XIV	28 Juill. 9h 21.7m	2 sec. sépar.	18s		VI	28 Juill. 19h 55.0m
731 V	20 Juni, 9- 21,1-2		10-			20 juni 10 000

Observations de M. Kossatcheff.

Remarquons d'abord que l'échelle employée par M. Kossatcheff pour apprécier la force n'est pas celle de Rossi-Forel, employée d'ordinaire dans le bulletin russe. Nous lisons en effet dans les journaux qu'à 3^h a. m. du 26 juin (h. loc.), c'est-àdire pendant les tremblements N^{os} III et IV, des cheminées tombèrent, des vitres se brisèrent et toute la population "habituée déjà aux tremblements" fut saisie d'une horrible panique. La force était donc VIII—IX d'après l'échelle de Mercalli. Vers 7^h (heure locale 26 juin No. VI) s'éleva de la baie d'abord tranquille une vague immense qui jeta des barques et des canots sur le rivage à une distance de 60 m.; des rochers éclatèrent et tombèrent dans l'eau. C'est donc la force IX—X. De plus les observations citées sont probablement incomplètes, car nous lisons que des chocs souterrains se répétèrent en s'affaiblissant pendant toute la journée du 26 juin et même le 27 juin à quelques heures d'intervalle, tandis que dans la liste de M. Kossatcheff il ne se trouve pas d'observations entre 8^h a. m. du 26 juin à 10^h a. m. du 27 juin. D'après les journaux, les secousses cessèrent le 28 juin au moment où quatre grands volcans commencèrent à fumer.

En effet, dans la liste de M. Kossatcheff les n°s X, XI, XII sont d'une intensité très faible comparativement aux précédents et il n'y a de fortes secousses qu' à la fin du mois de juillet, secousses sur lesquelles nous ne possédons pas d'autres renseignements. Il faut donc conclure que l'on doit ajouter environ 3 degrés aux indications de M. Kossatcheff pour le mois de juin; cependant l'heure indiquée est assez exacte, comme nous le verrons plus loin. La force des tremblements n°s I et VI qui n'est pas indiquée dans la liste a probablement été très considérable, comme le prouvent aussi les enregistrations dont nous parlerons. Un fait bien connu, c'est qu'il y a presque toujours pendant les grands tremblements de terre des secousses multiples sortant du même épicentre. Leur intensité est plus grande au commencement de la période sismique, puis elle s'affaiblit et devient enfin insensible. Il faut donc conclure que toutes les secousses décrites ont le même épicentre bien qu'on ne puisse le préciser. N'ayant d'autres observations que celles de Pétropawlowsk, où la force des secousses a été très considérable, la seule conclusion qu'on puisse en tirer, c'est que l'épicentre se trouve probablement non loin de Pétropawlowsk, peut-être un peu au nord de cette ville.

Passons aux observations microsismiques. En parcourant les recueils des enregistrations, on trouvera pendaut l'époque dont il est question un certain nombre de groupes d'enregistrations, plus ou moins nombreux, dont la plupart pourrait bien appartenir aux tremblements du Kamtchatka. Les publications que nous avons revues sont les suivantes.

A. Belar. "Die Erdbebenwarte".

T. Claxton. Results of the Observations at the R. Alfred Observatory, Mauritius.

F. Etzold. 5. Bericht der Erdbebenstation in Leipzig. Ber. d. K. Sächs. Ges. d. Wissensch. O. Hecker. Seismometrische Beobachtungen in Potsdam. Veröff. d. K. Preuss. Geod.

Inst. N.F. No. 21.

W. Kesslitz. Jahrb. der seismometr. Beob. in Pola. N. F. Bd. IX.

G. Levitski. Bull. de la Commission. Centr. Sism. Perm. de St. Pétersbourg.

J. Milne. Br. Ass. Circular. No. 10, 11.

A. Orloff. Über die Seismogramme des Zöllnerschen Horizontalpendels. Sitzungsb. Dorp. Naturf. Ges. 1906, XV, 3.

L. Palazzo. Bolletino della Società Sismologica Italiana. Vol. XI.

H. Reid. Records of Seismographs. "Terrestr. Magn." V. X, nos 2, 4.

A. Réthly. Ungarischer Erdbebenkatalog für 1904.

E. Rudolph. Ost-Asiatischer Erdbebenkatalog. Beitr. zur Geophysik. Bd. VIII, No. VII. *H. Schering.* Seismische Registrierungen in Göttingen. Nachr. K. Ges. d. Wiss. 1905, No. 2.

R. Schütt. Mitteilungen der Hauptstation für Erdbebenforschung zu Hamburg.

Monthly Weather Review of the U.S. Weather Bureau.

J'ai en outre eu à ma disposition les manuscrits des observations faites à Strasbourg et à Quito et les copies photographiques des enregistrations de Coïmbre (pendule de Milne).

A l'exception d'un certain nombre de perturbations isolées, séparées par des intervalles de quelques heures et réparties sur le monde entier, les groupes d'en-registrations qui suivent se distinguent d'une manière plus ou moins marquante.

-					
		Heure du	Nombre		
N٥	Date	commenc.	des	Situation des stations	Remarques
		des enregistr.	station		ŕ
-	04 T 1	hm hm	<u>.</u>		
1	24 Juin	1 10 - 2 42	34	Asie, Europe, Amérique, Afrique	· · · ·
2	25 Juin	242 - 306	12	Nord de l'Asie, Europe	
3	, ,,	14 50 - 15 42	58	Tout le monde	
4	"	$18\ 57\ -\ 19\ 34$	3	Nord de l'Asie, Europe	
5	"	$20 \ 12 \ - \ 20 \ 48$	13	Asie, Europe	
6	"	$21 \ 01 \ - \ 21 \ 38$	55	Tout le monde	
7	26 Juin	2 03 - 2 35	4	Nord de l'Asie, Europe	
8	"	4 49 - 5 42	4	Nord de l'Asie, Europe	
9	"	$10 \ 36 \ - \ 11 \ 58$	43	Asie, Europe, Afrique, Amérique	
10	"	$16\ 24\ -\ 16\ 56$	3	Nord de l'Asie, Europe	
[11	"	$19 \ 49 \ - \ 20 \ 33$	21	Asie, Europe, Amérique, Australie	A partir de Batavia]
[12]	,,	$20 \ 33 \ - \ 20 \ 46$	6	Europe]
[13	,,	$22 \ 01 \ - \ 22 \ 37$	5	Nord de l'Asie, Europe	A partir de Tiflis]
14	"	$23 \ 15 \ - \ 23 \ 52$	12	Nord de l'Asie, Europe	
15	27 Juin	0 05 - 0 55	56	Tout le monde	
[16]	"	$21 \ 19 \ - \ 22 \ 06$	10	Nord de l'Asie, Europe	Ressenti à Irkutsk]
[17	28 Juin	0 00 0 30	7	Nord de l'Asie, Europe	A partir de Tachkent]
[18	,,	2 18 - 2 23	5	Europe	Ressenti au Balcan]
19	,,	$13 \ 21 \ -13 \ 46$	6	Nord de l'Asie, Europe	· · ·
20	29 Juin	0.58 - 1.45	4	Nord de l'Asie, Europe	
21	, ,,	157 - 228	7	Asie, Europe	
[22	,,	$23 \ 20 \ - \ 23 \ 21$	3	Japon	Ressenti en Japon]
[23	30 Juin	12 53 - 12 59	2	A Tachkent et à Potsdam]	
24	.,	$17 \ 31 - 18 \ 01$	6	Nord de l'Asie, Europe	
[25		20 44	2	Japon	i.
26		$10\ 38\ -\ 11\ 45$	35	Asie, Europe, Amérique, Afrique	
-	5				
	1	1	1	1	1

Les groupes entre parenthèses, savoir les nos. 11, 12, 13, 16, 17, 18, 22, 23, 25, n'appartiennent évidemment pas au cas dont il est question. Parmi les autres groupes les nos. suivants des listes tant microsismiques que macrosismiques montrent une remarquable coïncidence.

Observ. macros.	nos	Ι	Π	III, IV	V	VI	VII	VIII	\mathbf{XIII}
Observ. micros.	\mathbf{n}^{os}	1	2	3	4	6	14	15	26

Les n°s 5, 7, 8, 9, 10 n'ont pas d'heures correspondantes dans la liste de M. Kossatcheff, mais d'après les indications du journal mentionné, il y a eu aussi à ces mêmes heures des secousses au même épicentre. C'est ce qui peut être démontré avec la plus grande probabilité pour le grand tremblement no. 9. L'origine des enregistrations n°s 19, 20, 21, 24 reste douteuse; il n'y a d'autre part pas d'enregistrations correspondant aux secousses n°s IX, X, XI, XIV.

En passant aux détails des observations microsismiques, on remarque à première vue que les n^{os} 1, 3, 6, 9, 15, 26 se distinguent des autres par le grand nombre de stations citées et par les indications détaillées qu'on a pu obtenir par la lecture

34 -

35

l'état actuel de la science, on n'est pas encore parvenu à une connaissance précise du mouvement vrai du sol. En 1904 surtout il n'y a que 2-3 stations qui donnent ce mouvement dans une mesure absolue pour quelques moments choisis. On est donc forcé de se contenter d'un aperçu général sur la transmission des ondes sismiques. La prépondérance des différentes espèces d'ondes dans les diverses parties des enregistrations donne lieu à une division en phases caractéristiques, connues par les travaux de Rebeur, d'Oldham et d'Omori. Ce sont la première et la seconde partie des oscillations préliminaires et la phase principale. D'aprés Omori, celle-ci peut être encore subdivisée en différentes parties, mais dans la pratique cette subdivision n'est pas répandue. C'est même un nombre relativement restreint des publications citées, qui donne le moment initial des trois phases indiquées; ce sont les publications des stations allemandes, la publication américaine, le catalogue de M. Rudolph et celle de la station de Mauritius. Les circulaires de M. Milne ne donnent que deux phases, la phase préliminaire et la phase principale ou le moment d'arrivée des ondes lentes. En effet, le commencement enregistré par l'appareil de Milne se rapporte tantôt à la première, tantôt à la seconde partie de la phase préliminaire, ce que l'on peut aisément voir, soit en les comparant aux indications des stations situées presque à la même distance de l'épicentre, soit en calculant approximativement les moments d'arrivée d'après les vitesses connues, p. e. à l'aide des tables de M. Benndorf¹). La publication russe contient une autre subdivision. On v trouve: T = commencement des oscillations faibles, C = commencement, R = renforcement. Une étude comparée de ces moments montre clairement, que du moins pour les stations du réseau du Caucase, cette division se confond avec la division citée plus haut. Les autres stations permettent également de distinguer souvent ces trois phases principales. La publication italienne donne d'ordinaire une description détaillée des particularités des sismogrammes, description suivant laquelle on réussit souvent à distinguer les phases indiquées. Quelquefois on y trouve même des indications directes. Ainsi j'ai réussi a classer les moments qui se rapportent aux tremblements nºs 1, 3, 6, 9, 15, 26 suivant un spécimen contenant ces trois phases que je désigne par V1, V2, B.

Un grand nombre de stations sont pourvues de plusieurs sismomètres dont les enregistrations, même pour les différentes composantes, ne coïncident presque jamais parfaitement. La question se pose donc: lequel des moments différant un peu est-il le commencement vrai de la phase à considérer. Dans ce qui suivra j'ai adopté pour principe de toujours choisir, parmi les indications d'une valeur probablement égale, celle qui indique en premier lieu le commencement. S'il y a des raisons spéciales pour les rejeter, on trouvera une remarque explicative. Les tableaux suivants donnent ces moments. J'y ai ajouté encore les maxima, lorsqu'ils

¹) *H. Benndorf.* Über die Art der Fortpflanzung der Erdbebenwellen im Erdinnern. Mitt. Erdbebenkomm. Wien N.F. No. XXIX. peuvent se rapporter à la phase B. Le maximum apparent indiqué par un pendule sans amortissement ne se rapporte pas rigoureusement au maximum vrai du mouvement du sol. Il se présente même plusieurs maxima d'une valeur apparente presque égale. J'ai donc indiqué non seulement le premier moment, mais aussi les limites, entre lesquelles tombent les maxima fournis par les différentes composantes de la station en question, pour le cas où il y en a.

Dans les listes suivantes les stations sont classées par ordre selon leur distance de la ville de Pétropawlowsk. J'ai mesuré ces distances sur un grand globe terrestre d'après Kiepert à l'échelle de 1 : 16 500 000 ce qui comporte une exactitude de 200 Km. près. C'est très probablement la limite d'exactitude avec laquelle ces distances peuvent être confondues avec les distances de l'épicentre. J'ai omis les indications sur les stations suivantes:

- Tchita, Kabansk, Krasnoïarsk (Sibérie), qui, pendant cette année de guerre ne purent obtenir des corrections exactes de leurs horloges;
- Pavie, Turin, Giaccherino, Urbino (Italie), qui de même ne donnent pas l'heure exacte de leurs enregistrations;
- Granade (Espagne); je n'ai trouvé pour cette station que des indications vagues dans l'"Erdbebenwarte".

Parmi les observatoires de Florence j'ai choisi celui dont les enregistrations étaient les plus détaillées et qui donnaient le plus tôt le commencement. Si plusieurs de ces enregistrations me semblaient également justes, je les ai toutes données. Les remarques des originaux concernant les observations se trouvent indiquées par des guillemets. Des nombres, évidemment faux pour quelque cause défavorable sont mis entre parenthèses.

Station	Distance de Pé- tropawl.	Vı hms	V2 hms	B hms	Max. hmm	Durée m	Remarques
Tokio . . Irkoutsk . . Honolulu . . Victoria (Canada) . . Calcutta . . Chemakha . . Tiflis . . Akhalkalaki . . Borjom . . Edimbourg . . Nikolaïen . . Batoum . .	2500 3700 5100 5500 6900 7700 7900 7900 8000 8000 8000 8100 8100	1 09.7 1 09.9 1 11 33 1 16.2	1 20.4 1 20 4 (1 32.4) 1 30 09 1 30.8 1 25.0 1 23.3 1 24.2	1 22.6 1 28.4 1 40.5 1 44 25 1 44 55 1 45 02 1 45 04	1 14.1 1 24.8 - 34.6 1 32.9 b m 1 45.6 1 47 30 1 47 - 54 1 52 10 1 54 1 53.5 1 55.6 1 51.0 1 51 - 2 00	135 65 55 38 100 100 26 63 94 58	"Doubtful" "Very small, but decided"

Nº 1. 24. Juin 1904.

	Distance											
Station	de Pé-	V ₁	V ₂	В	Max.	Durée	Remarques					
	tropawl	h m s	h m s	h m s	h m m	m	i i i i i i i i i i i i i i i i i i i					
Potsdam	8100	1 15 44	1 25 05		1 43 - 53	165	· · · ·					
Hambourg	8100	1 15 45	1 25 04			211						
Leipzic	8200	1 15 57	$1 \ 25 \ 30$	1 37 30		70						
Göttingen	8200	1 15 49	$1 \ 25 \ 18$	1 41.6		104						
Madras	8200				1 54.3	7	"Thickening of line"					
Bombay	8200			$1 \ 35.3$	1 47.0	40	<i>"</i> 3					
Bidston	8300		1 22.6	1 33.0	1 52.3	69						
Kew	8500			1 48.4 ?	1 55.2 ?	36	, Times somewhat incer-					
Shide	8600		1 23.6		1 51.9	60	1 fain"? de l'Origin.					
Strasbourg	8700	1 16 19	1 26 40			154						
Baltimore	8700			1 39.0	2 11.0	65	"Times very inaccurate".					
Padoue	8900	1 16 27	1 26 09	1 47 40	•	63	$\int D'àprès Quarto V_1 =$					
Florence (Xim.) .	9100	1 17 00	1 26 00	1 45 00		93	16 ^m 39 ^s "un pò incerto";					
Beyrouth	9100	(1 4)			1 59	73	pas de détails.					
Rocca di Papa	9200	1 16 40		$1 \ 44 \ 19$		57						
Ischia	9300	1 16 53				49						
San Fernando	10200	۰.	1 28.4	1 56.8	1 59.9	65						
Porto Rico	11300			1 58.3		13	"Long slow waves".					
Le Cap	16300		-		2 42.5	39	"Slight vibrations".					
-			Nº 3.	25. ju	in 1904.							
Tokio	1				14 55.9	180						
Irkoutsk	3700		14 57.4	15 04.1	$15 \ 07 \ - \ 28$	248						
Zi-ka-wei	3900	14 53 30	14 50 0	15 00		8	37 11//					
Sitka	4200	14 54.1	14 59.0	15 08	(1F AF F)	41	"Very small"					
Honolulu	5100	14 24 4	15 01 1	15 05 9	(15 47.5)	100	"Times very inaccurate"					
Victoria	5500	1 1	15 01.1	15 05.3	15 16.5	128						
Manille	5500	14 54 45	15 00 0		(14 56 20)	40						
Tachkent	6600	14 55.1	15 02.8	11 140	15 97 0	165						
Calcutta	6900	14 56.0		15 14.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100						
Jouriev	7100	14 56 22		15 18 47 15 25 17		124						
Chemakha	7700		1	15 25 17 15 25.5	$15 \ 20 \ - \ 54$ $15 \ 33 \ - \ 35$	174						
Tiflis	7900			15 25.5 15 25 53	15 55 - 55 15 34 53	89						
Akhalkalaki	8000			15 25 55 15 25 51	15 36	84						
Borjom	1	$14 57 04 \\14 58.0$		15 25 51 15 16.5	15 30.0	148						
Edimbourg	8100	14 00.0	1	15 10.5 15 30	15 40.2	139	1					
Paisley	8100		1	15 14.8	15 32.7	142	"Began suddenly"					
Toronto	8100	14 57 13		15 14.0 15 25 53		94	"Degan Succenty					
Batoum Potsdam	8100		$15 \ 00 \ 41$ $15 \ 06 \ 33$	10 10 00	$15 \ 25 \ -38$	270						
	8100		15 06 35 15 06 45		$15 \ 25 \ -50 \ 15 \ 34 \ 43$		Dans l'original V ₂ est B					
Hambourg	8200	14 57 17 14 57 20		15 22 42	LO OT TO	162						
Leipzic Göttingen	8200			15 12 42 15 18	$15\ 26\ -\ 42$	183						
Madras	8200	11 01 10		15 28.0	$15 \ 20 \ -42$ $15 \ 34.4 \ -38.0$							
maaras,	1.000											
	1	1., jl	1		1	1	1					

37 —

Station	Distance de Pé-	۰ T	V ₁		V_2		В		Max.	Durée	Remarques
	tropawl.	h 1	m s	h	m s	h	m s	h	m m	m	_
Bombay	8200			15	07.1			15	34.5	95	
Batavia	8300	14 5	5 49		05 21	15	33 43		36 46	101	
Bidston	8300	14 5			07.3	10	00 10		29.2	168	Dans l'original V2 est B.
Budapest	8400	11.0			07 20	15	17	15		61	Dalla i originar v ₂ est D.
O'Gyalla		(14. 4	7 11)		01 20		15 49		25.3 - 25.6	86	
Kew	8500		,		07.2	10	10 10		35.2 - 38.4	104	
Shide	8600	(14 1	8.3)	10	01.5				33.0-40.5	172	· · · ·
Strasbourg	8700		57 37	15	07 20			10	00.0 10.0	1.2	
Laibach	8700		56 30	10	0, 20			15	34	52	
Baltimore	8700	110	0 00			15	24.5		53.5	126	∫ "Times very inaccurate"
Fiume	8800					15		10	00.0	8	∫ Dans l'original B est V₁
Pola	8800						24 12	15	$37 \ 09 - 15$	16	
Pola	8900	14 =	7 56	15	07 55				32 11	87	
	9100				07 37		24 00	1	33-37	180	
Florence	9200				08 29	10	2 4 00		33-43	64	
Rocca di Papa	9300		58 20		08 48	15	26 45	•	39 30	92	
Ischia Catania	9600		58 23	19	00 40		32 43		59 50 42	.88	
Carloforte	9600	14 0	00 20			10	04 41		42 - 52	10	
	9700	111	10.0						42— <u>52</u> 53.0	110	
Caïre	9800			15	10.4	15	24.3		40	135	
Coïmbre	10200	15 (10.4 11.1	10	44.0			135	Dana Panianal X ant D
San Fernando	1			19	11.1			10	41.6	78	Dans l'original V ₂ est B.
Ponta Delgada	10200	15 (J1.4	15	11.0			15	105	132	-
Perth (Australie) .	10400 10600			•	11.0 14.8	15	45.0		46.5	148	
Wellington	11300	15 (פפר		14.0 18.2		33.1		05.9 - 09.8 44.7 - 46.4	140	Trupical F O "
Porto Rico	12400	15(15)		10	10.4	10	00.1		$54-16\ 07$	63	"Typical E. Q."
Quito	1	10 (94	15	12.5	15	46.0		54.5	143	Dang Parising V act V
Mauritius	12700	115 0)r 0	10	12.0						Dans l'original V ₂ est V ₁ .
Le Cap	16300	15 (J 5. 0			10	06.0	10	23.0	126	
•					Nº (3.	25 ju		1904.		
Tokio	2500								05.6	210	
Irkoutsk	3700	21 C						21	22.5 - 40.0	178	
Sitka	4200	21 0			15.3	21	22			51	
Honolulu	5100	21 0		21	15.4				27.8	234	
Victoria	5500	21 0				21°	18.8	1	30.2	174	
Manille	5500							1	19 32)	38	
Tachkent	6600	21 1		21	14 5				33.5		
Calcutta	6900	21 1					36.0	21	38.0	169	
Jouriev	7100				19 42		$32 \ 11$				
Chemakha	7700				20 55		39 43		45.8—48.4	144	
Tiflis	7900				20 59			F	43.8 - 50.2	1	•
Akhalkalaki	7900				$21 \ 09$		$40\ 43$		44.5 - 48.5	1	
Borjom	8000	21 1	.1 47		21 03	21	40 47		49.7 - 50.6	89	
Edimbourg	8000	21 1	2.5		22.0				44.5	198	
Paisley	8 10 0			21	20	21	36	21	48.5		Dans l'original V ₂ est B.

Station	Distance de Pé-		V1		V ₂		В		Max.	Durée	Remarques
	tropawl.		m s	h	m s	h	m s	h	m m	m	L -
Toronto	8100	21	15.2			21	36.5	21	52.2	143	
Batoum	8100			21	21 35		41 17		49.2 - 50.4		
Potsdam	8100				21 37				39.5 - 49.9		
Hambourg	8100		12 15		21 39				46 14		
Leipzic	8200		12 05		21 37	21	37 30			134	
Goettingen	8200		12 02		21 27		31.7	21	33.2 - 47.0		
Madras	8200				22.1				51.3	103	
Bombay	8200	21	13. 0			21	41.4		50.4	148	
Batavia	8300		10 31	21	20 08		47 18		54 43	79	
Budapest	8400		10 01	21			29		40 20 [°] -48 [°]		
O'Gyalla	8400	(91	02 13)		20		27 40		$40\ 01\ -14$	122	
	8500	(41	02 10)		19.2	21	21 40		50.3	157	
Kew Strasbourg	8700	01	12 25	1	19.2 21 19	91	39 09		49.0 - 51.0		
•				21	21 19	21	29 09	•	49.0-51.0	46	
Laibach	8700	ZI	11 30			01	90 A			40	f "Times very inaccurate
Baltimore	8700	~ 1	10.01				38.0		07.0	77	🗎 Î Dans l'original B est V
Washington	8700	21	12 31				44 59	1	50.6-53.4	16	
Fiume	8800						37	1	37		
Pola	8800		12 50		01 F1				43.2-45.9		1
Padoue	8900		12 37		21 51		36	1	46 16	70	
Florence (Xim.)	9100				22 52		34 35		42 - 50	62	
Florence (Quarto).	9100		$12\ 45$			21	33 38		43.8-56.5	67	
Beyrouth	9100		13.2		23.2				58.2		Dans l'original V ₂ est B.
Rocca di Papa	9200		$12\ 52$	1			$37 \ 17$		46.4 - 54.7		
Ischia	9300	21	$13 \ 12$	21	$23 \ 30$		4 0	1	54	87	
Catania	9600	21	$13 \ 09$			21	$39 \ 43$	1	$55\ 29$	57	
Caïre	9700				24	21	44.5	22	00.0	134	
Coïmbre	9800	21	14.4	21	25. 0	21	38.0	21	55.7	125	
Ponta Delgada	10200	21	16.0	21	25.8					91	Dans l'original V₂ est le n
Perth (Austr.)	10400			21	24.7	21	31.3	22	44.0	178	
Wellington	10600			21	29.8	21	59.7	22	06.5-19.8	3 162	
Porto Rico	11300			21	32.7	21	48.1	21	53.5]
Trinidad	12200			(21	36)			22	17	60	
Quito	12400	21	20	1.	28			22	2 2	158	
Mauritius	12700		21.1			22	00.1	22	09.6	140	
Le Cap	16300		20.0			22	20.0	22	38.0	170	
					N° 3	9.	26 iı	iin	1904.		
Tokio	2500	10	46.8	I		-) 50.7)	140	[
Irkoutsk	3700		47.0			10	59.1		08.9-10.1	199	
Honolulu	5100		48.0	10	54.6		58.0	1	08.5	96	
Victoria	5500	1.0	10.0	1	55.5	11	00.0		16.3	73	
Tachkent	6600	10	51.0	1	59.2	11	11.5		18.1		
	1	110	01.0		59.4	(16.7		17.7	62	
Calcutta	6900	ł		1	03 59		12 09		15.3-18		
Jouriev	7100			11	00 00		18 49		13.3 - 18. 28.7 - 293		
Chemakha	7700			1		111	10 49	11	40.1-29	101	1

- 40 -

	,	1			1	1	
C 4 - 4	Distance	1					
Station	de Pé- tropawl.	V ₁	V ₂	B	Max.	Durée	Remarques
	Liopawi.	h m s	h m s	h m s	hm m	m	
Tiflis	7900	10 51.9	11 01.2	11 19 11	11 00 0 91 7	99	
Akhalkalaki	7900	10 01.0	11 01.2	11 19 11	11 28.9-31.7	33	
Borjom	8000			11 19 15 11 19 20	11 22.6-29.2		
17.11.1	8000		11 02.0	11 19 20	11 29.3-30.5	32	
Nikolaiew	8000	10 50.9	11 02.0		11 33.0	90	
Paisley	8100	10 00.0	$(11 \ 16)$	(11 97)	11 28 8	157	
Toronto	8100		11 02.0	(11 27)	11 28.5	73	∫ "Very small".
Batoum	8100		11 02.0	11 19 31	11 07 0 90.0	1	ĺĺĎans l'original V₂ est V₁.
D / 1	8100	10 52 03	11 01 37		11 27.8-30.0	41	
TT	8100	10 52 03			11 19.3-39.2	195	
-	8200	10 02 19	11 01 54	1	11 23.7-30.7	188	
Leipzic	1	10 50 05	11 01 05	11 15 30	11 00 7	52	•
Goettingen Madras	8200 8200	10 52 05	11 01 35		11 29.7	113	
and the second	8200			11 25.2	11 34.3	38	Dans l'original B est V.
Bombay Batavia			11 00 10	11 20.1	11 22.5	32	Dans l'original B est V.
	8300		11 00 19		(11 03.1)	5	Dans l'original V ₂ est V ₁ .
Bidston	8300		11 01.2		11 19.5	49	Dans l'original V ₂ est B.
Budapest	8400		(11 11)			18	
O'Gyalla	8400		(11 11 10	1		17	
Kew	8500	10 500	11 00 0	11 17.8	11 29.8	45	∫ V₁ et V₂ d'après de
Shide	8600	10 52.9	11 00.6		11 24.4-35.8	84	différentes compos.
Strasbourg	8700	10 52.0	11 02 25	1	$11 \ 25 \ - \ 37$	158	∫ "Times very inaccurate".
Baltimore	8700	10 50 10	11 00 10	11 29.0		28	$\int Dans l'orig. B est V_1.$
Padoue	8900	10 52 49	11 02 40			87	
Beyrouth	9100	10 50 50		11 19.2	11 42.2	36	Les autres observ. plus
Florence (Quarto).	9100	10 52 59				132	tard, phases incorrectes.
Rocca di Papa	9200	10 52 50) 11 23 32	11 24.4-30.1	62	
Ischia	9300	10 53 07		11 30	11 36	49	
Caïre	9700				$11 \ 37 \ - \ 55$	18	"Thickening".
San Fernando	10200		11 04.3	11 23.8	11 35.8-40.3	63	, ,Very small. Beginning and
Porto Rico	11300			11 28.7		28	end indefinite".
Think 1	10000						L Dans l'original B est V ₁ .
Trinidad	12200		(11 16)		10,000	32	"Thickening of line".
Le Cap	16300	1		11 58.0	12 22.0	38	Dans l'original B est V.
			N°	15. 27 j	uin 1904.		· · · · · · · · · · · · · · · · · · ·
Tokio	2500	0 16.1	1.	1	0 22.4	180	· .
Irkoutsk	3700	1	0 23.0	0 28.8	0 32.4-45.0		
Zi-ka-wei	3900	0 16 20		0 27 20		104	
Sitka	4200		0 23.5	0 31.0	0.02.00	30	
	1000		0 10.0	0 01.0			(Au commencement peut-
Honolulu	5100	0 09.8	0 14.6	0 23.1	0 37.4	230	{ être un autre tremblem.
							B correspondrait à V ₂ .
Victoria	5500	0 18.1	0 24.8		0 33.2	174	Dans l'original V ₂ est B.
Manille	5500	0 09 20			(0 29 22)	222	Le commencement corre-
							spond peut- être à un autre
	1		1 .				tremblement.Voir Honolulu.
	1	1	- 1	1	I a	1	1

--- 41 ----

•

Station	Distance de Pé-	Vı	V_2	В	Max.	Durée	Remarques
	tropawl.	hm s	h m s	hms	h m m	m	Remarques
Fachkent	6600	0 18 9	0 23.0				
Calcutta	6900	0 19.0	0 20.0	0.41.3	0 45 4	63	
louriev	7100	0 19.0 0 19 49	0 28 38	0.41.5 0 39 13		00	
Chemakha	7700	0 13 43 0 20 12	$0\ 20\ 30$ $0\ 29\ 31$		0 44 46	1 4 1	
Fiflis	7900	$\begin{array}{c} 0 & 20 & 12 \\ 0 & 20.3 \end{array}$	$0\ 29\ 51$ $0\ 29\ 51$	0 48 43	$0\ 51.6-57.0$	141	
Akhalkalaki	7900	$0\ 20.3$ 0 20 45	$0\ 29\ 51$ $0\ 30\ 29$	0 48.8	0.52.5 - 1.01.9	191	
Borjom	8000	$0\ 20\ 40$ $0\ 21\ 00$		0 49 41	053.3-101.7	90	
Edimbourg	8000	0 21 00	$\begin{array}{c} 0 & 30 & 37 \\ 0 & 30 & 5 \end{array}$	0 49 49	0 56.3 - 1 02.1	90	
Nikolaïev	8000	0 20.0	0 30 5		0 54.3	182	(Commencement obscurci
Paisley	8100		(0.00)	0 50	0 56.1		{ par les tremblements
Foronto	8100	0 01 1	(0 36)	0 53	0 55	100	l précédents.
Batoum	8100	0 21.1	0.00 50	0 45.2	0 52 6	139	
Potsdam		$0\ 21\ 09$	0 30 56	0 49 38	1 02.2-04.2	75	
T 1	8100 8100	$0\ 20\ 33$	0 29 53	0 36 04	0 49.3-58.4	240	
—		0 20 45	0 29 48		0 56.1-56.7	220	×
Leipzic	8200	0 20 34	0 29 58	0 40 51		116	
Goettingen	8200	0 21 33	0 30 54	0 46	0 55.8	188	
Madras	8200		0 30.8	0 32.3	1 10.3	89	"Thickening of line".
Bombay	8200		0 31.6	0 51.8	1 00.8	85	(In division on phases as
Batavia	8300	0 19.2	0 23.0	0 26.9	0 29.6	147	La division en phases ne semble pas juste.
Budapest	8400	(0 09 30)		0 49	$(0 \ 43.4 - 44.3)$	77	(semble pub juste:
O'Gyalla	8400	0 11		0 40 58	0 43.1-48.1	83	
Kew	8500	0 21.3			0 58.6	185	
Strasbourg	8700	0 21 04	•			219	
Laibach	8700	$0\ 21\ 25$			1 00	46.	
Baltimore	8700		0 33.5	$0 \ 42.5$	1 07.5	156	"Times very inaccurate".
Washington	8700	$0\ 21\ 03$		0 46 56	0 55 56	64	
Pola	8800	$0\ 21\ 39$		0 53 45	0 54 53	24^{-1}	
Padoue	8900	$0\ 21\ 13$	$0\ 31\ 06$	0 37.4-47.6		89	
Florence (Xim.) .	9100	$0\ 21\ 10$	$0\ 32\ 00$	0 39.0-46.0	0 54.1-1 15.0	159	
Florence (Quarto).	9100	$0\ 21\ 26$	$0 \ 31 \ 12$	0 46 24	0 56.2-1 06.9	52	
Florence	9100	$0\ 21\ 30$	$0\ 31\ 30$	0 44	0 57-1 08	113	
(Coll. alla Querce) Beyrouth	9100	(0 15.4)	0328		1 04.7		
Rocca di Papa	9200	(0 13.4) 0 21 25	$0\ 32\ 0\ 31\ 53$	0 45 35	055.5 - 104.2	102	
schia	9300	$0\ 21\ 20$ $0\ 21\ 40$	$0\ 31\ 30$ $0\ 32\ 30$	0 45 55	1 02	78	
Catania	9600	02140 02149	0 52 50	047 045 52	0.58.2 - 1.15.4	58	
Caïre	9700	0 21 49	(0 28.0)	0 40 02	1 08.5	122	
Coïmbre				0.466		122	
San Fernando	9800		0 33.3	0 46 6	1 04.1		Au commenc. forts trembl. pendul.
Perth	10200		0 34.3		1 06.3	100	Commenc. caché par le trembl. précé
-	10400		0 33.9	1 00 4	1 26.7	106	
Wellington	10600		$0\ 32.5$	1 09.4	1 30.5 - 35.5	159	
Christchurch	10800	0.077	0 32.5	0	1 31.0-36.1	122	
Porto Rico	11300	0 27.7	0 42.1	0 57.0	1 06.5 - 14.2	90	
Quito	12400	0 28		1 11 1	1 06	76	
Mauritius	12700	0 28.2		1 11.7	1 38 2	217	
Le Cap	16300	0 28.0		1 32 0	1 44.0	146	

4	2 \cdot
---	-------------

Nº 26. 24 juillet 1904.

	Distance														
Station	de Pé-		V1			V_2			В			Max		Durée	Remarques
	tropawl.	h	m	s	h	m	s	h	m	s	h	m	m	m	
Irkoutsk	3700	10	51	2				11	05.	5	11	05.5-	-11.1	304	
Honolulu	5100				10	59.8	8	11	03.	3	11	10.3		74	
Victoria	5500				11	00.0	0							6	
Manille	5500	10	53	37							(10	$55 \ 0$	4)	34	
Calcutta	6900				11	05.'	7	11	19.	9	11	27.0		- 53	
Jouriev	7100	10	54	36	11	08	22	11	15	11	11	21.9-	-25.3		
Chemakha	7700	10	59	44	11	09	36	11	26	08	11	340-	-35.9	81	
Tiflis	7900	10	56	04	11	04	57	11	19	57	11	31.6 -	-33.8	110	
Akhalkalaki	7900							11	21	05	11	29.1 -	-32.9		
Edimbourg	8000							(11	45.	0)	11	57.4		44	Dans l'original B est V.
Paisley	8100							11	29		11	35		34	Dans l'original B est V.
Toronto	8100	Ì			11	05.8	5							66	-
Batoum	8100				11	06	31	11	20	41	11	29 17	7	70	
Potsdam	8100	10	55	59	11	05	17	(11	13	28)	11	22.2-	-37.3	180	$\begin{cases} D'après la composante, Wiech.Nord'' \\ B = 11 h 19 m 50 s ,, (?)'' ce qui est probablement la valeur exacte. \end{cases}$
Hambourg	8100	10	54	31	10	58	31	11	04	34	11	30.3-	-38.6	149	{ La division en phases ne semble
Leipzic	8200	1		13		05			20					61	(pas juste.
Goettingen	8200			05)	05			$\overline{21}$		11	25 -	-29.5	84	
Bombay	8200			•••		•••			18.	2	11	32.3		38	
Batavia	8300	10	54	15	11	05.4	4		24.		11	34.7		60	
Bidston	8300					06.0			15		11	36.2		59	(D'après la compos. C.
Shide	8600	10	57	.7			-			-	11	32.0		130	$V_1 = 10^{h} 34.2^{m}$ trop tôt; pro-
Strasbourg	8700	10	56	37				11	24						bablement trembl. pendul.
Baltimore	8700				(11	15.0	0)				11	35.8		45	
Padoue	8900	10	56	50			- /	11	27					53	
Florence (Xim.) .	9100	10	56	34	11	06	24		27	00				78	Peut-être $B = 11 \ 15 \ 19$.
Beyrouth	9100					08					11	39		54	
Rocca di Papa		(11	02	42)				11	20	09	11	30.6-	-36.8		
Catania	9600	l.		03	1	06	58		29					50	· - · · · · · · · · · · · · · · · · · ·
Caïre	9700								42.		11	45		· 24	, "Distinct tremor".
San Fernando	10200				(11	12.4	4)	l '	33.		11	39.4		118	Dans l'original B est V.
Porto Rico	11300				\		,		37.					26	Dans l'original B est V.
	1	I			I			1			l			1	l č

Parmi les différentes méthodes approximatives pour calculer la position de l'épicentre, la première règle de M. Làska¹) est celle qui dans la pratique a donné les meilleurs résultats. Elle donne la relation

(1) $\ldots \ldots \ldots \ldots = V_2 - V_1 - 1$.

Ici \triangle est la distance sphérique en milliers de kilomètres ou "mégamètres"; V₁ et V₂ doivent être exprimés en minutes. Les autres règles de *M. Làska* donnent (2) \triangle . \triangle = $\frac{1}{3}$ (B-V₁) d'où \triangle = $\frac{1}{2}$ (B-V₂ + 1).

1) Làska. Über die Berechnung von Fernbeben. Mitteil. Erdbebenkomm. Wien N.F. No. XIV.

Or on voit en parcourant les tableaux indiqués ci-dessus que les moments B sont assez mal définis. Même de bonnes stations situées l'une près de l'autre présentent pour les valeurs de B des écarts de plusieurs minutes. Malgré le dénominateur 2 ou 3, il reste pour la distance calculée une erreur d'un mégamètre au moins. Au contraire, les moments V_1 et V_2 sont d'ordinaire beaucoup plus nettement définis. Notamment les stations voisines ne donnent d'ordinaire que des écarts d'une ou de deux dizaines de secondes. Toutefois cela comporte déjà une erreur bien grande sur la distance calculée. Car d'après la formule (1) $0.1^m = 6^s$ équivaut à 100 km. On est donc forcé de ne choisir pour le calcul des distances que des réseaux de stations qui donnent les moments aux secondes près. En outre, il faut qu'on ait plusieurs stations, contenues dans une aire assez peu étendue pour être autorisé d'en prendre la moyenne arithmétique. Il en existe trois réseaux, savoir les stations du Caucase, celles de l'Allemagne et celles de l'Italie. Je donne ici un aperçu des valeurs V_2 — V_1 pour ces stations.

	Nº 1	Nº 3	Nº 6	Nº 9	Nº 15	Nº 26
	24 juin	25 juin	25 juin	26 juin	27 juin	24 juill.
Caucase	m ş	m s	m s	m s	m s	m s
Chemakha	_	9 22	9 12	_	9 19	9 52
Tiflis	-	930	9 04	9 18	9 33	8 53
Akhalkalaki .	_	$9\ 26$	9 24	-	944	
Borjom	_	9 27	9 16	-	9 37	—
Batoum	-	928	9 32	-	9 47	—
Allemagne						
Potsdam	921	9 15	9 21	9 34	9 20	9 18
Hambourg	9 19	9 28	924	9 35	9 03	(4 00)
Leipzic	9 33	929	$9 \ 32$	_	9 24	9 16
Goettingen	9 29	9 27	9 25	9 30	9 21	9 22
Strasbourg	1 0 2 1	943	854	10 25	—	-
Italie						
Padoue	9 42	9 59	9 14	9 51	9 53	_
Florence	9 00	9 37	10 11	8 24	10 18	9 50
Rocca di Papa		9 17	9 53	(12 58)	10 28	-
Ischia		10 28	10 18	_ ´	10 50	-

 $V_2 - V_1$.

On voit bien qu'on ne saurait baser un calcul un peu exact que sur valeurs obtenues pour les tremblements n^{os} 3, 6, 15, tandis que les autres permettent seulement de conclure que leurs épicentres se trouvent dans le voisinage des premiers. Ceux-ci fournissent les moyennes suivantes; j'en ai omis Strasbourg, situé un peu loin des autres stations de l'Allemagne.

	№ 3. 25 juin 14.8 h	Nº 6. 25 juin 21.0 h	№ 15. 27 juin 0.2 ^h	Moy.	Δ
Caucase	ms	m.s	m s	m s	
$(\varphi = 41^{\circ} 27', \lambda = 44^{\circ} 23' \text{ E.Gr.})$	9 27	9 18	9 36	9 27	$8.45~\pm~0.08$
Allemagne $(\varphi = 51^{\circ} 12', \lambda = 11^{\circ} 22' \text{ E.Gr.})$	0.05	0.00	0.15	0.00	
$(\varphi = 51 \ 12, \chi = 11^{\circ} 22 \text{ e.gr.})$ Italie	9 25	926	9 17	9 23	$8.38~\pm~0.05$
$(\varphi = 42^{\circ} 58', \lambda = 12^{\circ} 23' \text{ E.Gr.})$	9 50	954	$10 \ 22$	10 02	9.03 ± 0.17

 $\mathbf{44}$

En supposant que les trois tremblements de terre sortent du même épicentre, on peut en prendre la moyenne et calculer l'erreur moyenne d'une distance. En y comparant les distances correspondantes du tremblement nº 9 (26 juin 10.7^h), dont nous ne possédons pas d'indications macrosismiques exactes, on trouvera qu'elles sont à peu près égales aux distances trouvées pour les nº 3, 6, 15. On en conclura donc qu'il sort du même épicentre. Pour ce qui est de la position exacte de cet épicentre, elle ne peut guère être calculée avec une grande précision d'après les distances ci-dessus. Celles-ci donnent malheureusement un triangle très étroit qui s'étend depuis la partie méridionale de l'île de Sakhaline jusqu'à la mer de Behring. Le centre de gravité de ce triangle se trouverait à 200 km vers le NE de la ville de Pétropawlowsk. Comme la force des secousses senties dans cette ville a été très considérable, l'épicentre ne se trouve probablement pas à plus de 100-200 Km. C'est donc pour le moment le degré d'exactitude de nos connaissances. Il semble certain du moins, que les distances entre les stations microsismiques et Pétropawlowsk et les distances entre ces mêmes stations et l'épicentre ne diffèrent pas de plus de 100-200 km.

D'autre part, il est bien facile d'obtenir une approximation de 500 à 1000 km. Il suffit de parcourir la liste des enregistrations donnée ci-dessus, pour prouver que toutes les enregistrations à phases complètes conduisent vers la région de la presqu'île de Kamtchatka.

Les listes des enregistrations communiquées permettent de calculer ou de contrôler au moins la vitesse de propagation des ondes sismiques, déjà très approximativement connues. Parmi les nombreuses valeurs calculées pour la propagation des oscillations terrestres, celles de M. Benndorf, citées plus haut sont prouvées être les meilleures. M. Benndorf a su trouver des formules du second degré pour les tremblements préliminaires. On pourrait les recalculer à l'aide des moments t (pour V₁ ou V₂ respectivement) de nos observations d'après la formule

 $\mathbf{t} = \mathbf{t}_0 + \triangle \mathbf{x} + \triangle^2 \mathbf{y}$

et l'on obtiendrait le moment du tremblement à l'épicentre t_0 et les coefficients x et y. On formerait ces équations pour toutes les stations et on les résoudrait d'après la méthode des moindres carrés. Mais ce procédé un peu long est inutile, parce que les coefficients de *M. Benndorf* sont déjà très exacts. On s'en apercevra aisément en calculant t_0 d'après les tableaux de *M. Benndorf*. Alors on ne trouvera pas d'écarts systématiques pouvant conduire à une amélioration notable.

J'ai calculé le temps moyen to d'après la plupart des stations, en excluant les stations de Paisley et de Quito qui ne donnent que les minutes entières et encore quelques-unes indiquées ci-dessous sont-elles évidemment incorrectes; j'ai en suite formé les écarts de cette moyenne pour des groupes de cinq stations. En me basant sur les moments V₁ j'obtiens:

No. 3. 25 juin $t_0 = 14^{h} 46.1^{m} \pm 0.1^{m}$		No. 6. 25 juin $t_0 = 21^{h} \ 00.7^{m} \pm 0.1^{m}$		No. 15. 2 $t_0 = 0^{h} 09.6^{h}$	Moyenne		
\triangle (mégam.)	dt₀	△ (mégam.)	dt ₀	△ (mégam.)	dt _o	\triangle (még.) dt ₀
4.0 6.8 8.0 8 1 8.7 9.6 12.7		4.2 6.8 8.0 8.2 8.6 9.1 11.8	$ \begin{array}{c} {}^{m}\\1.4\\ +\ 0.2\\ 0.0\\ +\ 0.2\\\ 0.7\\\ 0\ 2\\ +\ 1.9\\ \end{array} $	3.9 7.1 7.9 8.1 8.4 8.8 11.8	m + 0.6 0.4 0.4 0.1 0.5 0.4 + 1.5	4.0 6.9 8.0 8.1 8.4 9.2 12.1	$\begin{array}{r} & {}^{\rm m} \\ - & 0.1 \\ - & 0.2 \\ - & 0.2 \\ - & 0.6 \\ - & 0.2 \\ + & 1.7 \end{array}$
Honolulu, Shide, O'Gyalla, Caïre		Toronto, O' Kew, Tri	<i>.</i> ,	Honolulu, Man pest, O'Gyalla,		Station exclues	

Les stations à moins de 10 mégamètres de distance donnent toujours des écarts négatifs, tandis que les autres, savoir Ponta Delgada, Porto Rico, Mauritius et Le Cap, donnent toujours une heure de retard. *M. Benndorf* a trouvé le même rapport dans les observations qu'il a analysées et il explique ce retard par la sensibilité trop faible des pendules horizontaux. Comme cette explication est très probable, il serait imprudent de déduire une correction du dernier écart positif. L'autre écart un peu grand, savoir — 0.6^{m} pour la distance 8.4, est causé en grande partie par le fait, que la station de Batavia qui entre dans ce groupe, donne les écarts respectifs: — 1.9^{m} , — 1.7^{m} , — 2.0^{m} . Or on ne s'en tiendra pas à une seule station pour en déduire des corrections. Restent donc les écarts constants — 0.1^{m} à — 0.2^{m} qui disparaîtraient, si l'on prenait la moyenne en négligeant le dernier groupe.

Le calcul basé sur les moments V_2 donne le même résultat. En divisant les observations en groupes de 4 stations, on obtient:

- 45 ---

No. 3. 2	•	No. 6. 2	5 juin	No. 15. 2		Moye	
$t_0 = 14h 46.3$	m ± 01m	$t_0 = 21 h \ 00.6$	m ± 0.1 m	$t_0 = 0h 09.6$	$t_0 = 0h \ 09.6m \pm 0.1m$		
\triangle (mégam.)	dto	\triangle (mégam.)	dt _o	△ (mégam.)	dt _o	$ \triangle $ (még.)	dt _o
	m		m		m		m
5.0	-0.6	5.7	- 0.4	5.0	0.3	5.2	-0.4
7.6	0 0	7.9	+ 0.2	7.6	+0.2	7.7	+ 0.1
8.1	-0.5	8.1	+ 0.5	8.0	+0.3	8.1	+ 0.1
8.2	-0.2	8.2	± 0.0	8.2	- 0.1	8.2	- 0.1
8.3	- 0.5						
8.8	- 0.8	8.6	- 0.4	8.7	+0.5	8.8	-0.2
9.6	+ 0.1	9.2	-0.1	9.2	+0.2	9.4	+0.1
11.2	+2.3	10.0	+0.4	10.5	- 0.8	10.6	+0.6
·		Trinidad, Po Welling		Honolulu, 1 Caïre, Port	,	Station exclue	

Ici l'écart positif du dernier groupe n'est pas si grand, parce que quelques stations éloignées n'y entrent pas. L'écart négatif un peu grand du premier groupe est causé par la station de Tachkent qui donne les écarts — 1.3^{m} , — 4.4^{m} , — 4.4^{m} ; évidemment la division en phases n'a pas été exacte. Sans égard à ces groupes un peu douteux, on obtiendrait des moyennes qui ne diffèrent pas de celles données ci-dessus (correction probable = 0.0^{m}).

Les moments t_0 calculés par V_1 et V_2 s'accordent dans les limites de leur erreur moyenne. En prenant la moyenne, après avoir appliqué aux moments d'après V_1 la correction la plus probable de -0.2^m , on obtient finalement:

No. 3. 25 juin, 14^h 46.1^m. No. 6. 25 juin, 21^h 00.6^m. No. 15. 27 juin, 0^h 09.5^m.

De même on obtient pour les 3 autres tremblements de terre à l'aide des bonnes stations européennes:

No. 1. 24 juin, 1^h 04.4^m. No. 9. 26 juin, 10^h 40.5^m. No. 26. 24 juillet, 10^h 44.7^m. Comme l'erreur probable des distances sur lesquelles le calcul est basé n'atteint que 100-200 km, l'erreur des moments donnés ci-dessus ne dépasse guère ± 0.2^m.

La discussion de nos observations a donc prouvé qu'en moyenne les formules de *M. Benndorf* sont parfaitement applicables au cas que nous avons considéré. C'est une nouvelle preuve de la valeur de ces formules dans les limites d'exactitude que comportent les observations obtenues jusqu'à nos jours.

Une autre question importante pourrait être résolue en discutant les moments V_1 et V_2 . C'est la question de savoir, si ces moments dépendent de l'azimut de la station par égard à l'épicentre, en d'autres termes, si l'intérieur de la terre est isotrope. Malheureusement, nos observations ne sont pas suffisamment exactes pour nous permettre de donner une réponse rigoureusement exacte à cette question. Les instruments employés aux différentes stations sont d'une sensibilité très différente et outre cela les stations sont trop inégalement réparties. On ne pourrait jamais

-- 46 -

se fier à une station isolée. Je suis donc forcé de me borner à quelques exemples. Les moments V1 fournissent:

		No. 3	No. 6	No 15.
	Δ	t _o m	t _o	m
Irkoutsk	3.7	$\left. \begin{array}{c} 46.1 \\ 45.7 \end{array} \right\} \left. \begin{array}{c} {}^{\rm m} \\ 45.7 \end{array} \right.$	55.8 58.1	$\left. \begin{matrix} 09.8 \\ 09.1 \end{matrix} \right\} 09.4$
Tachkent	6.6	$\left. egin{array}{c} 46.1 \ 45.3 \end{array} ight\} \left. egin{array}{c} {}^{ m m} 45.7 \end{array} ight.$	$egin{array}{c} 55.8 \ 60.4 \end{array} ight brace 58.1$	$09.1 \int 09.4$
Victoria	5.5	$egin{array}{c} 45.9 \\ 46.3 \end{array} ight\} 46.1$	$\left. \begin{array}{c} 60.7 \\ 61.2 \end{array} ight\} 61.2$	09.6
Manille	5.5	46.3 J 40.1	$61.2\int^{01.2}$	
Goettingen	8.2		60.5	10.1
Strasbourg	8.7		$egin{array}{c} 60.5\ 60.4 \end{array} ight\} 60.4$	$09.1 \int 09.6$
Washington	8.7		$egin{array}{c} 60.5 \ 63.8 \end{array} iggree 62.2$	09.1 09.1
Toronto	8.1		$63.8 \int \frac{62.2}{2}$	$\begin{array}{c} 10.1\\ 09.1\\ 09.1\\ 09.1\\ 09.7\\ \end{array} \right\} 09.4$
Les moments V ₂	fourn	issent:		-
Madras	8.2	46.8	62.2	09.9
Bombay	8.2	$46.2 \ \ 45.8$	$\begin{array}{c} 62.2\\ 59.1 \end{array} \right\} 60.6$	$egin{array}{c} 09.9 \\ 10.7 \end{array} iggl\} 10.3$
Batavia	8.3	44.4	59.1	
Leipzic	8.2	45.9 45.8	60.7 60.6	$\left. \begin{array}{c} 09.1 \\ 10.0 \end{array} \right\} 09.6$
Goettingen	8.2	$45.8 \int 45.8$	60.6	$10.0 \int 09.0$

On voit bien que les écarts des stations situées presque au même azimut sont souvent beaucoup plus grands que les écarts pour des azimuts tout à fait différents. Les moyennes indiquées ne diffèrent généralement que de quelques dixièmes de minute. Dans les limites d'exactitude des observations contemporaines, on regarderait donc ces moyennes comme égales. Comme l'erreur de la moyenne de quelques stations ne surpasse guère 1 min. pour un temps de propagation de 10-20 min., on en conclura que la différence de vitesse pour des azimuts différents est inférieure à $5-10^{0}$. On est donc autorisé de dire que les inhomogénités de l'intérieur de la terre, s'il en existent, ne peuvent être démontrées dans l'état actuel de nos connaissances. Une double réfraction appréciable ne semble pas probable pour les ondes des phases préliminaires des tremblements de terre.

Une recherche concernant la propagation des ondes lentes représente beaucoup de difficultés. Les premières ondes lentes ont d'ordinaire une amplitude si faible qu'on ne les découvre qu'à l'aide d'instruments d'un fort agrandissement, comme p. e. le sismomètre de M. Wiechert. A l'aide de pareils instruments on les retrouve quelquefois déjà très près du moment V_2 ; souvent il n'existe pas un commencement net de la phase B. En effet, nos observations montrent de grandes différences pour les moments B. Un calcul précis paraît donc inutile et un graphique sera plus approprié. C'est ce que j'ai fait pour les trois grands tremblements nos 3, 6, 15. J'ai eu ainsi pour le résultat que la plupart des stations peuvent être divisées en deux groupes. Les unes correspondent à une propagation à peu près constante

avec une vitesse de 1000 km en 5 min. environ; les autres donnent une vitesse plus grande de 1000 km en 4 min. C'est au premier groupe qu'appartiennent les stations du Caucase et les stations les plus éloignées (p. e. Le Cap.); l'autre est représentée par quelques stations de l'Allemagne et de l'Italie. Le premier groupe fournit la vitesse acceptée à l'ordinaire pour les ondes lentes, c'est-à-dire 31/3 km/sec. Le deuxième donne une vitesse beaucoup plus grande, savoir 4.2 km/sec. C'est la moyenne de ces deux vitesses, c'est-à-dire 3.8 km/sec., qui répond à la deuxième règle de M. Làska, comme M. Benndorf l'a déjà démontré. Il paraît donc, qu'il y a là en vérité deux phases, dont l'une se distingue surtout dans les enregistrations des pendules sans amortissement, tandis que l'autre ne peut être distinguée que par une étude minutieuse des détails des sismogrammes, de sorte que seuls quelques òbservatoires spéciaux y réussissent. La deuxième règle de M. Làska ne paraît qu'une approximation vague, tirée de la moyenne de plusieurs observations d'un caractère différent. Je me suis arrêté un peu longtemps à ces faits qui ne sont établis qu'avec une certaine incertitude, parce que la question des tremblements du Kamtchatka n'est pas la seule. J'ai trouvé le même phénomène pour quelques autres tremblements de terre de l'année 1904 que j'ai étudiés.

La propagation de la phase maximale ne peut être établie avec rigueur à l'aide des pendules sans amortissement qui sont encore les plus répandus. Le maximum apparent de l'enregistration s'obtiendrait théorétiquement au moment où la période des mouvements du sol coïncide avec celle des oscillations propres du pendule. Pour des pendules de différents systèmes, cela peut arriver à des phases tout à fait différentes. Toute fois on remarque un rapport plus ou moins régulier des chiffres indiqués plus haut. Une représentation graphique ne paraît pas sans intérêt, du moins pour les trois tremblements principaux n^{os} 3, 6, 15. La ligne qui passe par les points moyens des maxima semble un peu courbée; la vitesse moyenne est de 2.9 km/sec., c'est-à-dire la vitesse trouvée déjà par M. Oldham¹).

Le mouvement vrai du sol n'est calculé que pour les stations de Potsdam (un peu approximativement) et de Goettingen. On y trouve les amplitudes maximales suivantes:

	25 juin 14.8 ^h	25 juin 21.0 ^h	27 juin 0.2^{h}	4 avril 10.5 ^h
Potsdam	$1700 \ \mu$	$1945~\mu$	$1200~\mu$	$5000~\mu$
Goettinger	n 700	1500	600	> 2000

J'y ai ajouté les chiffres pour le grand tremblement de la Macédoine, parce qu'il est le seul de l'année 1904 qui ait donné des amplitudes plus grandes que celles du Kamtchatka. Tous les autres tremblements de cette année ont eu des amplitudes beaucoup moindres. J'ai aussi calculé les accélérations maximales en milligales. Les voici.

¹) Br. Assoc. Rep. 1902.

Potsdam	$ \begin{array}{c} 25 \\ \hline Comp. E \\ \underline{Comp. N} \\ \overline{Résult.} \end{array} $	$ \begin{array}{r} 25 \text{ juin } 21.0^{\text{h}} \\ $	27 juin 02^{h} 8.3 <u>6.2</u> 10.4	4 avril 10.1 ^h 19.6 <u>33.3</u> <u>38.6</u>	4 avril 10.5 ^h 15.4 <u>30.6</u> 34.3
Goettingen			3.0 > 3.0	15.6 15.6 22.1	> 9.7 > 9.7 > 13.7

En comparant les accélérations maximales des tremblements du Kamtchatka et de la Macédoine, on trouve qu'à Potsdam les dernières ont été 3-4 fois plus grandes que les premières; à Goettingen elles ont été 4-7 fois plus grandes. Or l'énergie rayonnante se perd en raison inverse des carrés des distances, sans égard à l'extinction probablement considérable des ondes sismiques. Les distances ont été respectivement 8.1 et 1.4 mégamètres pour Potsdam et 8.2 et 1.5 pour Goettingen. Il faudrait trouver pour ces distances une raison de l'unité à 30 ou 33 du rapport des carrés des amplitudes complètes. Les tremblements du Kamtchatka ont donc été au moins 5 ou 10 fois plus forts que les célèbres tremblements de la Macédoine.

Les autres groupes d'enregistrations citées au commencement sont beaucoup plus incomplets que ceux qui viennent d'être examinés. Les ondes faibles des phases préliminaires surtout échappent très souvent aux appareils installés à de grandes distances. La subdivision en deux phases V_1 et V_2 est impossible dans la plupart des cas. Ce n'est que la phase principale B qui est ordinairement enregistrée. On ne trouve quelquefois qu'une indication du maximum observé. Je collationne donc ces observations suivant un spécimen abrégé qui ne contient que le premier moment observé, lorsqu'il peut correspondre à la phase préliminaire (V) et le moment qui peut être considéré comme le commencement de la phase principale (B). Si cette dernière ne peut être établie, je donne à sa place le maximum en caractères gras. Les stations sont classées selon leurs distances de la ville de Pétropawlowsk. Voici les observations. Dans un grand nombre de cas, la durée ne pouvait être indiquée, parce qu'ils se mélaient à d'autres enregistrations qui suivaient immédiatement.

- . 49 -

Date	Station	V.	B Max.	Durée	Remarques
25 juin Nº 2	Irkoutsk Honolulu Jouriev Tiflis Nikolaïew Potsdam Hambourg Goettingen Bidston Strasbourg Beyrouth	$ \begin{vmatrix} h & m \\ 2 & 45 \\ 2 & 41.9 \\ 2 & 41 & 50 \\ (2 & 59.8) \\ (3 & 02.2) \\ 2 & 43 & 40 \\ 2 & 44 & 30 \\ (2 & 59.2) \end{vmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c } & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$	$\left\{ \begin{array}{l} L'autre compos. donne \ V = 2^h 37^m 51^s cequi est évidemment trop tôt. \ ,,Small". \end{array} ight.$
25 juin № 4	Irkoutsk Tiflis Strasbourg Rocca di Papa	18 57.5	19 10.8 – 13.4 19 27.8 19 33 35 19 44 10	$33 \\ 46 \\ {}^{1/2}$	Local?
25 juin № 5	Irkoutsk Honolulu Tachkent Calcutta Jouriev Tiflis Potsdam Bidston Kew Shide Strasbourg San Fernando	20 12.1 20 12.6 20 23.4 20 26 24 (20 32 04) 20 14 00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 8 29 8	V est évidemment V2. V est évidemment V2. Dans l'original B est V.
26 juin Nº 7	Irkoutsk Tiflis Potsdam Strasbourg	2 03.1	2 06.3 2 26.5 2 21 0 2 34 50	35 30	V est peut-être V ₂ .
26 juin № 8	Irkoutsk Tiflis Jouriev Potsdam Strasbourg	4 48.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	165 4 3	D'après <i>M. Orloff</i> .
26 juin N∘ 10	Irkoutsk Rocca di Papa Strasbourg	16 24.0	16 32.3 16 42 42 16 56 20	100 29	
26 juin № 14	Irkoutsk Tachkent Jouriev Tiflis Nikolaïew Potsdam Bidston Kew Shide Strasbourg Rocca di Papa San Fernando	23 14.8 23 21.0 23 22 26 23 18 55 (23 40 45) 23 32 24	23 19.9 22.4 23 31.7 33.0 37.2 23 43.0 37.2 23 32.4 32.4 23 48.0 23 23 46.6 23 23 50 06	46 20 6	<pre>{ D'après l'autre comp. B = 23^h 27.9^m { "Merely a broadening of the line". V paraît être V₂.</pre>

On voit bien que les indications sont trop incomplètes pour en déduire d'une manière exacte la position de l'épicentre. On essayerait de calculer au moyen des vitesses déjà connues et à l'aide des distances de Pétropawlowsk les moments des secousses à l'épicentre. Un accord plus ou moins satisfaisant entre les chiffres obtenus amènerait la conclusion probable que ces enregistrations sont dues à des tremblements dans les environs de Pétropawlowsk. On trouve en moyenne les heures suivantes.

Nº 2	Nº 4	Nº 5	Nº 7	Nº 8	Nº 10	Nº 14
25 juin,	25 juin,	25 juin,	26 juin,	26 juin,	26 juin,	26 juin,
2h32m	18 ^h 50 ^m	20 h 05 m	$1^{h}50^{m}$	4 h 40 m	16h10m	23 h 05 m

L'accord est satisfaisant pour le n° 2, mais il est beaucoup plus mauvais pour les autres. Comme les n° 4 et 14 coïncident avec les observations de M. Kossatcheff, elles seraient aussi comptées dans le nombre des tremblements du Kamtchatka. Les autres restent douteux, bien que l'arrangement des stations pour le n° 5 prouverait qu'une origine aux environs de la presqu'île de Kamtchatka serait d'une certaine probabilité.

Il est facile de déduire la correction de l'heure des observations macrosismiques à l'aide des moments calculés d'après les enregistrations. On trouve

	24 juin			25 juin			26 j	uin	24 juill.
	Nº I	N∘ II	Nº III	Nº IV	Nº V	Nº VI	Nº VII	Nº VIII	Nº XIII
M. Kossatcheff {	h m	h m	h m	h m	h m	h m	h m	h m	h m
M. Kossatcheff	1 17.4	$2 \ 40$	$15 \ 04$	$15 \ 13$	19 04	$21 \ 17.6$	$23 \ 14.7$	0 26	$10 \ 34$
Docum. microsism.	1 04.4	$2 \ 32$	14 46.1	_	$18 \ 50$	$21 \ 00.6$	$23 \ 05$	0 09.5	10 44.7
Correction	— 13 0 m	í — 8m	- 18 ^m	_	— 14 ^m	— 17.0 ^m	10 m	— 16 ^m	+ 11 m

On voit que la montre de l'observateur a été en avance de 14 min. environ au mois de juin, et en retard de 11 min. au mois de juillet. L'erreur accidentelle des observations macrosismiques a été de 2 ou 3 min. en moyenne, ce qui est la limite ordinaire d'exactitude pour de semblables observations.

Par égard à l'extension et aux détails des observations microsismiques, on a donc les groupes suivants des tremblements

Nºs 3, 6, 15 très étendus, enregistrations très distinctes et claires

Nºs 1, 9, 26 étendus, enregistrations distinctes

Nºs 2, 4, (5), 14 étendue médiocre, enregistrations faibles.

L'intervalle de temps qui sépare les secousses est plus grand au commencement de la période sismique, puis elle diminue pendant que la force des secousses augmente, mais enfin les secousses deviennent plus faibles et les intervalles augmentent. On pourrait y chercher quelques périodicités. On remarquerait, p. e., que les intervalles qui séparent les secousses n°s 1, 2, 3, 6 sont respectivement

 $25^{h} \ 28^{m} = 6^{h} \ 22^{m} \times 4$; $12^{h} \ 14^{m} = 6^{h} \ 07^{m} \times 2$, $6^{h} \ 15^{m}$ tandisque les n^{os} 6, 9, 15, 26 sont séparés par des intervalles de $13^{h} \ 39^{m}$, $13^{h} \ 29^{m}$, 27 j. $10^{h} \ 36^{m} = 50 \times 13^{h} \ 10^{m}$

— 51 —

Les trois premiers intervalles sont à peu près multiples de 6^h 15^m ce qui est environ le quart de la journée lunaire $(24^{h} 55^{m})$; les trois derniers sont à peu près multiples de 13^h 2. Mais je n'insiste pas sur ces spéculations. Pour que de pareilles recherches aient une valeur scientifique, il faut posséder des documents sûrs concernant la profondeur de l'origine, la force et le caractère des secousses, et ces documents nous manquent.

Elmar Rosenthal.